
A New Approach to Estimating the Bellman Function

Jan Zeman

Abstract— The paper concerns an approximate dynamic
programming. It deals with a class of tasks, where the optimal
strategy on a shorter horizon is close to the global optimal
strategy. This property leads to a new, specific, design of the
Bellman function estimation. The paper introduces the pro-
posed approach and provides an illustrative example performed
on the futures trading data.

I. INTRODUCTION

The motivation of the research originates from the fu-
ture trading, with the main aim to design a profitable
strategy of buying/selling of commodities, betting on the
increase/decrease of the future price [1].

To this aim, the available historical price-data covering
35 markets from the last 15 years has been analyzed.
Comparison of the trading strategies designed for different
values of time horizon has shown that an increase of amount
of data causes only partial change of the strategy designed.
Moreover the non-changing part of the strategy is always
situated at the beginning and is similar to the best strategy
designed for a much larger horizon. This property, specific
for futures trading data, has been exploited to design and im-
plement the proposed approach on the approximate dynamic
programming.

The paper introduces the mentioned property in more
details as well as outlines possible application to dynamic
programming.

The dynamic programming is an optimization method
based on the idea presented in [2]. The dynamic program-
ming maximizes the gain G over a sequence of decisions
xt, . . . , xT :

max
xt,...,xT

G, (1)

where t ∈ {1, . . . , T} is a discrete time and T is finite,
possibly large, horizon. The set {1, . . . , T} is called a
decision period.

While dynamic programming searches the argument max-
imizing arg maxxt,...,xT

G, the maximum the optimal value
can be obtained by maximization Vt = maxxt,...,xT

G is
characterized by the Bellman function Vt [2]. The main
drawback of dynamic programming is the curse of dimen-
sionality (see [3]), therefore the approximate solutions should
be searched for.

This paper contributes at the approximation of Bellman
function. The proposed approach is useful for the tasks

This work was supported by cooperation with Colosseum a.s., CNR-
IMATI and grants GACR 102/08/0567, MŠMT 2C06001.

Jan Zeman is with the Department of Adaptive Systems, Insti-
tute of Information Theory and Automation, Prague, Czech Republic.
zeman@utia.cas.cz

arising in economic analysis and trading and can be of
interest for other applications.

The Section II-A introduces the dynamic programming and
formulates the Bellman equation. The Section II-B deals with
the method of a comparison of two strategies, which leads
to a design of a system of Bellman equations. The system
can be used for an estimation of the Bellman function in
a parametric shape (see II-D). The paper is concluded by
an example in Section III, where the proposed approach is
applied to futures trading data.

II. THE FIELD OF INTEREST

A. Dynamic programming task
A dynamic programming is an method applicable to the

problems when it is necessary to find the best decision one
after another. The decision making task assumes a decision
maker and a system. The system is a part of the world, which
is of interest for the decision maker. The system can be very
complex to be fully characterized, moreover the knowledge
about the system is usually partial.

The decision maker has own aim related to the system. The
aim are expressed in the form of a gain function GTτ , which
quantifies the degree of reaching the aim on (τ, T). The
decision maker applies a sequence of decisions (x1, . . . , xT)
to reach his aims, i.e. maximizing his gain function over the
decision period:

max
x1,...,xT

GT1 . (2)

The decision maker observes a system output (y1, . . . , yT).
The information available to the decision maker at time t to
design a decision xt is called knowledge. The knowledge
Pt contains a history of the system output and previous
decisions: Pt = (y1, . . . , yt, x1, . . . , xt−1).

The system and the decision maker form a closed loop.
The decision maker enriches his knowledge by system output
yt and designs a decision xt. The decision can be realized as
a system input, which influences the further behavior of the
system. This process is repeated at each t up to the horizon
T .

At time t, the decision maker maximizes:

max
xt,...,xT

GTt . (3)

The gain function GTt depends on the system output over the
whole time horizon (yt, . . . , yT). However the information
available to the decision maker at time t is Pt. Therefore the
decision maker is forced to use the expected value:

E(a|b) =
∫
a∈a∗

af(a|b)da,

where E(a|b) is the expected value of the variable a con-
ditioned on the knowledge of variable b and f(a|b) is the
probability density function of a defined at the set a∗ and
conditioned on b.

Thus, the decision maker maximizes the expected value
of the gain at time t:

V(Pt) = max
xt,...,xT

E(GTt |Pt, xt, . . . , xT),

which defines the Bellman function V(Pt).
The assumption of an additive gain function

Gt2t1 = Gtt1 +Gt2t+1 for t1 < t < t2

and the optimality principle [4] allow us to rewrite the
Bellman function in the recursive shape:

V(Pt) = max
xt,...,xt+h

E(Gt+ht +V(Pt+h+1)|Pt, xt, . . . , xt+h)),

(4)
where the maximum arguments xt, . . . , xt+h are the pro-
posed decisions and h is constant, which allows the design
of multi-step decision, its value is connected with shape of
gain function or kind of task.

The described formulation is too general for the class
of tasks considered in futures trading area, therefore the
following assumptions are accepted from here onward:

1) Discrete decisions: the decisions are chosen from a
finite, discrete and predefined set.

2) Open loop: the decision has no influence on the
system.

B. Similarity indexes

For each time t, there is a system output sequence
(y1, . . . , yt) available. We design the optimal strategy Xt =
(x1, . . . , xt), where we use the time t as horizon. The
strategy is optimal only on the time interval (1, . . . , t), and
is denoted by the superscript t.

Designing the strategy Xt at each time t, a sequence of
enlarging strategies is obtained:

{y1} ⇒ {x1
1} = X1,

{y1, y2} ⇒ {x2
1, x

2
2} = X2,

{y1, y2, y3} ⇒ {x3
1, x

3
2, x

3
3} = X3,

...
{y1, , yt} ⇒ {xt1, , xtt} = Xt.

Let compare the designed strategies with the longest
strategy XT for t = T . The strategy XT is called the optimal
strategy, because it is optimal for the decision period , i.e.
{1, . . . , T}. The other strategies are called suboptimal strate-
gies, because they are not optimal for the whole decision
period, but only for the respective sub-periods.

Let us assume that the suboptimal strategies Xt converges
to the optimal strategy XT with the growing t and let take
the first t elements of the strategy XT .

Now we can compare two sequences: (xT1 , . . . , x
T
t), which

is the beginning part of the optimal strategy XT and
(xt1, . . . , x

t
t), which is the suboptimal strategy designed at

time t. To compare these sequences, we used the following
similarity indexes:

• Similarity index St :

St =
t∑
i=1

δ(xti, x
T
i), (5)

where δ(x, y) = 1 for x = y and δ(x, y) = 0 for x 6= y.
The similarity index St is a number of identical ele-
ments in the sequences (xT1 , . . . , x

T
t) and (xt1, . . . , x

t
t).

• Strict similarity index St :

st = max
i
{i; (∀j ∈ N)(j ≤ i⇒ xtj = xTj)}. (6)

The strict similarity index is the maximal length of the
non-broken identical subsequence beginning by the first
element.

The definitions of St and st imply st ≤ St ≤ t.
To illustrate the introduces notions, let us con-

sider the following suboptimal and optimal strategies:
Xt = { 1 1 1 1 0 1 1 0 . . . 0 },
XT = { 1 1 1 1 1 1 1 1 . . . 1 },

where the sequence XT is cut to have the same length as
Xt. Sequences have 4 elements identical, the fifth element
differs, the sixth and seventh elements are identical and then
sequences differ.

There, the similarity index St = 6, because there are
6 identical elements in the sequences. The strict similarity
index st = 4, because the fourth element is the last element,
before the first difference occurs.

C. Bellman equation and similarity indexes

The solution of Bellman equation (4) is the most important
part of the dynamic programming task. The term ’solution’
means finding the Bellman function, a task that can be very
complex due to the backward recursive shape of the equation.
The optimal actions are only by-products of this solution.

The use of similarity indexes st and St could is useful, if
they grow with the time st ≈ t, St ≈ t.

At each time t, the sequence of optimal actions of length
st is known and the set of the Bellman equations is:

V(Pk) = max
xk,...,xk+h

E(Gk+hk +V(Pk+h+1)|Pk, xk, . . . xk+h)),

(7)
where k ∈ {1, . . . , st − h}.

The maximization can be carried out by substitution of
suboptimal actions Xt = (x1, . . . , xst

):

V(Pk) = E(Gk+hk + V(Pk+h+1)|Pk, xtk, . . . , xtk+h))
for k ∈ {1, . . . , st − h}. (8)

Due to k ≤ t, the expected values converges to substitution
of known values Pk, (xtk, . . . , x

t
k+h). Thus, the system of

functional equations (8) should be solved to obtain the
Bellman function.

D. Parametric shape of Bellman function

A lot of technical details should be resolved before full
use of the described approach. We restrict the design to
parameterized form of Bellman function:

V(Pt) ≈ V (Pt; Θ), (9)

where Θ ∈ Θ∗ is a vector of unknown parameters. Then, the
solution of the Bellman equation converges to estimation of
the parameters Θ and data prediction. Inserting (9) into the
system of equations (8), one can write:

V (Pk; Θ) + κk = E(Gk+hk + V
(
Pk+h+1; Θ)|

Pk, xtk, . . . , xtk+h
)
, (10)

for k ∈ {1, . . . , st − h}.

where κk is an error caused by approximation.
The system of functional equations (8) is further reduced

to the system of algebraic equation (10).

E. Task classification

Presented design assumes that st grows approximately
with time t. This is, of course, only the ideal case. Generally
there are three types of tasks:
• Task with a strong similarity - is a task, where st and St

grow with the time. Therefore, the number of equations
in system (8) or (10) grows with t. Thus, the presented
design can be applied.
In case of use parameterized shape and system (10), it
can happen that the number of independent equations
overgrows the degree of freedom and the desired solu-
tion should be searched respecting that.

• General task without a similarity - where st and St
are small constants independent of t. In this case, the
system has a small number of equations. The number
of equations in (8) and (10) do not grow, or grow by
jumps. There could not be enough equations to find a
solution. In this case, different design of the Bellman
function should be used. However even the available
”poor” system of equations can be used as a prior
information about the Bellman function.

• Task with a weak similarity - where st is a small
constant or growing only by jumps, but St grows with
t. The proposed approach can be used, but systems (8)
and (10) must be written for k ∈ {1, . . . , St − h}.
The approach can be applied carefully not all - but
almost all - equations in systems (8) and (10) are valid.
Thus the design systematically uses invalid equations
and this must be respected.

F. Causality problem

Presented classification is non-causal, because the optimal
strategy XT , designed over all decision period should be
known for the calculation of st and St and the approach can
be used for off-line experiments only.

On-line use needs to study the behavior of sequences of
the suboptimal strategies X1, X2, . . . , Xt and to estimate the
value of st.

III. EXAMPLE: FUTURES TRADING

Futures trading task is a task typically solved by exchange
speculators, who know the past price sequence and try to
decide, whether to buy or sell an object of interest. A profit
is made, when the speculator guesses the direction of the
price evolution, otherwise the speculator loses.

A. Futures trading as a game

From out point of view, the futures trading task can be
interpreted as turn based game: The player obtains a price yt
at the beginning of each turn t ∈ {1, 2, . . . , T}. He chooses
his decision xt, whether the price should increase xt = 1
or decrease xt = −1, or player can decide not to play for
the turn xt = 0. If player changes the choose xt according
to previous decision xt−1, then he pays a transaction cost
C|xt−1−xt|. At the beginning of next turn t+ 1, the player
makes profit of (yt+1−yt)xt, therefore when player bets the
right way, he makes money, otherwise he loses.

The player tries to maximize his profit up to horizon T :

GT1 =
T∑
t=1

(yt − yt−1)xt−1 − C|xt−1 − xt|.

The initial decision is necessary to be defined as x0 = 0.
The described game is a typical optimization problem of

dynamic programming (see [4]) and as such it should be
solved.

B. Similarity indexes

It is useful to characterize the systems (8) and (10)
according the time t, instead of k ∈ {1, . . . , st − h}. Thus,
we calculate following constants:

c1 = max
t∈{1...T}

(t− st), (11)

c2 = max
t∈{1...T}

(t− St), (12)

and characterize the systems (8) and (10), which is subset of
the original set of equations.

The constants c1, c2 characterize maximal number of non-
optimal decisions in Xt, which is related with the risk of
usage the invalid equations in systems of equations (8) and
(10). Hence, the less value of c1, c2 is better.

The causal estimation of similarity indexes can be done by
analyzing differences between the two suboptimal strategies
Xt−1 and Xt , cf. (5) and (6):

Ŝt =
t−1∑
i=1

δ(xt−1
i , xti), (13)

ŝt = max
i
{i; (∀j ∈ N)(j ≤ i⇒ xt−1

j = xtj)}. (14)

Analogically can be obtained causal estimation of the con-
stants c1 and c2 at the time t:

ĉ1,t = max
i∈{1,...,t}

(i− ŝi), (15)

ĉ2,t = max
i∈{1,...,t}

(i− Ŝi), (16)

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500

st
St

Fig. 1. Example of similarity indexes St and st for CL

The final value of ĉ1,t and ĉ2,t is not so important as their
behavior at time t < T . The values of ĉ1,t and ĉ2,t increase
with the time t. It is expected that their values converge to
a small constant, which is reached very early, therefore the
time of the last change tch;1 and tch;2 is documented.

We have 35 price sequences available for the offline
experiments. The data were collected once a day, when
the exchange was closing, each data set contains data from
1990 to 2005, which makes about 4000 samples all together.
Five price sequences were chosen as a representative for the
further experiments: Cocoa - CSCE (CC), Petroleum-Crude
Oil Light - NMX (CL), 5-Year U.S. Treasury Note - CBT
(FV2), Japanese Yen - CME (JY) and Wheat - CBT (W). All
constants defined above were estimated for the five reference
markets (see Tab. I).

The table shows good results, because the constants c1 and
c2 are the same and c1, c2 � T . Moreover, four of sequences
have c1 equal to c2 for each t, which implies that st is equal
to St. The values of tch;1 and tch;2 show the expected fact,
that the values of ĉ1,t and ĉ2,t do not change often and the
causal estimation of ĉ1,t and ĉ2,t gives satisfactory results
near to non-causal values. All these facts led to a conclusion
that futures trading task is the task with a strong similarity,
as was described in Sec. II-E.

The exception with a weak similarity is the market with
ticker CL. The obtained similarity indexes are depicted in
Fig. 1 and Fig. 2. The difference between st and t is markable
but it has only a local character, therefore the approach can
be used - with the expectation of worse results related to the
intervals with a weak similarity.

C. Estimation of Bellman function parameters

Let the parametrized form of Bellman’s function be:

V(Pt) ≈ g(xt)Ψt, (17)

where Ψt = (yt, yt−1, . . . , yt−n)T is regressor and g(xt) is
a row vector function.

2160

2180

2200

2220

2240

2260

2280

2300

2160 2180 2200 2220 2240

st
St
t

Fig. 2. Example of similarity indexes St and st for CL (detail)

For illustration purpose, the admissible values for xt are
chosen from a set x∗ = {−1, 0, 1}. Thus, the vector function
g(xt) is fully characterized by 3(n + 1) parameters, which
are the elements of vector Θ introduced in Section II-D. We
denote g(xt) = (Θxt,1,Θxt,2, . . . ,Θxt,n+1). Each element
Θxt,i is a function of xt. Due to the chosen set x∗, the
function Θxt,i is fully characterized by three values.

Substituting (17) into (10), we obtain:

g(xtk)Ψk − g(xtk+h+1)Ψk+h+1 = Gk+hk − κk, (18)

for

k ∈ {1, . . . , t− c1 − h},

we get a system of linear equations

Ax = b−K (19)

TABLE I
DOMINATING CONSTANTS c1 AND c2

Market c1 c2 ĉ1,T ĉ2,T tch;1 tch;2 T
CC 6 6 7 6 342 342 3822
CL 444 6 446 5 847 2205 3863
FV2 8 8 9 8 383 383 3766
JY 4 4 5 4 50 50 3871
W 7 7 8 7 2452 2452 3822

TABLE II
RESULTS OF EXPERIMENT

Market MPC IST
CC -6 450 -1 490
CL -12 350 3 390
FV2 -5 701 10 727
JY -26 568 -35 247
W -9 792 -1 923

where

x = (Θ−1,1, . . . ,Θ−1,n+1,Θ0,1, . . . ,Θ0,n+1,

Θ1,1, . . . ,Θ1,n+1).

and K = (κ1, κ2, . . . , κt−c1−h).
The system of linear equations must be solved for each

time t to obtain the estimation of the Bellman function
values. The number of equations in the system increases
by one in each time step. Due to the approximation of the
Bellman function, the system need not to be solvable, when
the number of equations grows over some threshold. And,
an approximate solution of system should be searched. We
have applied least square method to minimize the vector of
approximation errors K.

D. The results

The obtained parameters are inserted into the parametrized
form (17), which is used for maximization of (4). This
method corresponds with iterations spread in time (IST)
see [5]. To calculate the expected gain, causal predictions
generated by autoregressive model were used (see [5]).

As a reference, the results calculated via model predictive
control (MPC) were used. The predictive model and task
setup were the same for IST.

Final results are summarized in Tab. II. Presented IST
method reaches better results than MPC method at four of
the five datasets. Neither MPC nor IST gave enough good
results satisfactory to the use for real trading. However, the
results obtained by IST are slightly better.

IV. CONCLUSION

The proposed design of the Bellman function is based
on searching and analyzing of suboptimal strategies based
on known data. The design leads to system of functional
equations, but using parametrized shape of Bellman function,
the system can be transformed to a system of algebraic
equations.

The main idea is to analyze, if the suboptimal strategy
contains at least part of the optimal strategy. The task with
this property can be either strong or weak similarity. The
paper deals with a problem of causal and non-causal analysis
leading to a decision which kind of similarity the task
exhibits.

The approach is applied and demonstrated on an example
of futures trading, which is a typical economic decision
making task. The kind of similarity is tested and the behavior
of tested method is presented. Then, the new design of
Bellman function is applied. Results of experiments are
presented and compared to the results of a MPC method
and are slightly better.

REFERENCES

[1] J. Hull, Options, futures, and other derivatives. Pearson/Prentice Hall,
2006. [Online]. Available: http://www.worldcat.org/oclc/60321487

[2] R. Bellman, Dynamic Programming. Princeton, New Jersey: Princeton
University Press, 1957.

[3] W. B. Powell, Approximate Dynamic Programming. Wiley-
Interscience, 2007.

[4] D. Bertsekas, Dynamic Programming and Optimal Control. Nashua,
US: Athena Scientific, 2001, 2nd edition.

[5] M. Kárný, B. J., T. V. Guy, L. Jirsa, I. Nagy, P. Nedoma, and L. Tesař,
Optimized Bayesian Dynamic Advising: Theory and Algorithms. Lon-
don: Springer, 2005.

